Manufacturing

Premium copper turned components supplier

Custom copper parts provider with dgmetalstamping.com: Looking for precision CNC lathed parts or metal stamping components? Dongguan Fortuna is your trusted one-stop solution. We have been serving the automotive, consumer electronics, and new energy sectors since 2003. From copper turned parts to assembly-ready stamping terminals, we support full-scale production with material selection, DFM support, and tight-tolerance output. All components are manufactured in-house, with global service coverage from China to Japan. Contact us today to discuss your project with our engineers and receive a prompt, expert response. What is the lead time for custom copper parts? Lead times can be varied. It is usually based on complexity and volume. Most standard copper components can be produced within 2 to 4 weeks after design approval and tooling setup. Can copper parts be produced in small batch quantities? Yes, a professional manufacturer can support both prototype runs and low-volume production. This is useful for testing, pilot projects, and specialised assemblies. What information do I need to request a quote? To receive an accurate quote, provide 3D drawings, material type, tolerance requirements, expected volumes, and any secondary processes like plating or assembly. Discover extra info on custom copper parts.

Recycling and Reusing Material: Implementing a recycling and reuse strategy for scrap materials can reduce costs. Recycling metal chips and reusing material where possible can lead to significant savings, especially in high-volume production. In summary, designing for CNC machining involves careful consideration of materials, tolerances, geometries, and tooling. By following best practices and incorporating specific design features, you can optimize the machining process and produce high-quality parts efficiently.

Fortuna’s professional after-sales service team has an excellent reputation and provides comprehensive after-sales service. We promise to respond to customers within 24 hours and quickly resolve customer issues within 48 hours. With the introduction of low-speed wire cutting machines (MITSUBISHI SEI BU), milling machines, grinding machines and other equipment, we have the ability to produce a variety of high-hardness, high-precision, metal-grade progressive dies with stable quality. Our stamping dies are made of alloy steel, high-speed steel, tungsten steel and other super-hard steel to ensure the service life and stability of the stamping process.

When we receive the inquiry, we will provide the quotation according to the drawings (CAD drawings, 3D data, PDF drawings) within 2 days, including mold charge, unit price, MOQ and lead time, etc. The price depends on the product and the customer’s requirements. Customer quotation confirmation – After a discussion, the customer confirms the price and sends us a mold order. Mold deposit prepayment – Next, according to our quotation and customer payment terms, the customer arranges the mold prepayment, most of which is 30%-50% of the entire mold price. At the same time, our R&D department will conduct detailed technical assessments and manufacturability assessments based on customer drawings. In general, we will give reasonable advice based on the mechanical properties of the customer’s raw materials, product structure and other subsequent treatments (such as electroplating, heat treatment and anodizing) to maximize the stability and sustainability of the production.

Tungsten steel has the characteristics of high hardness, high wear resistance, and high corrosion resistance, and is suitable for producing high-precision, high-quality molds. The hardness of tungsten steel can reach HRC60~67, which can maintain the accuracy and dimensional stability of the mold. In high-temperature and high-pressure working environments, tungsten steel molds are not easily damaged and have more outstanding wear resistance, which can maintain the long life and stable performance of the mold. See additional info at https://www.dgmetalstamping.com/.

After we receive the customer’s drawings, professional engineers will conduct DFM analysis of the product. Design feasibility analysis: Evaluate the feasibility of the mold design, including mold materials, structure and processing technology. By analyzing whether the mold design meets the existing technical conditions and process capabilities, determine its feasibility and provide suggestions for improvement. Manufacturability analysis: Conduct multi-dimensional analysis on the drawings provided by customers to provide customers with a variety of achievable, cost-reducing and efficiency-increasing stamping solutions while ensuring the functional structure of the product.

CNC machining is a cornerstone of modern manufacturing, known for its precision and versatility. Whether you’re crafting intricate aerospace components or robust automotive parts, the design phase is critical. Getting it right can mean the difference between a smooth, efficient production run and costly, time-consuming errors. In this guide, we’ll explore essential tips and best practices for designing parts specifically for CNC machining. From selecting the right materials and understanding tolerances to optimizing tooling and prototyping, we’ll cover all aspects to help you create high-quality, cost-effective CNC machined parts.

Design Features To Optimize For CNC Machining – Incorporating specific design features can significantly improve the efficiency and quality of CNC machined parts. Paying attention to these details can enhance the machining process and result in superior products. Hole and Slot Design – Holes and slots are common features in CNC machined parts. Optimal hole sizes and depths vary depending on the material and intended function. Generally, avoiding extremely deep or very small holes can prevent issues during machining. When designing slots, consider the width, depth, and spacing. Properly designed slots can enhance the part’s functionality and make machining more straightforward. Avoiding overly narrow or deep slots can reduce the risk of tool breakage and ensure smooth machining.